LayerNormBackprop¶
Versioned name: LayerNormBackprop-1
Category: Normalization
Short description: Reference
Attributes:
begin_norm_axis
Description: begin_norm_axis is used to indicate which axis to perform layer normalization. The normalization is from begin_norm_axis to last dimension. Negative values means indexing from right to left. The default is last dimension.
Range of values: integer values
Type: int
Default value: -1
Required: no
use_affine
Description: use_affine when set to True, this module has learnable per-element affine parameters.
Range of values: False or True
Type: boolean
Default value: True
Required: no
epsilon
Description: epsilon is a constant to improve numerical stability
Range of values: a positive floating-point number
Type: float
Default value: 1e-5
Required: no
use_stats
Description: use_stats is used to indicate whether to use input mean and variance.
Range of values: False or True
Type:
bool
Default value: true
Required: no
Inputs
1:
input_forward
- input tensor. Required.2:
gamma
- gamma scaling for normalized value. A 1D tensor of type T with the same span as input’s channel axis. Required by attributeuse_affine
. Optional.3:
beta
- bias added to the scaled normalized value. A 1D tensor of type T with the same span as input’s channel axis.Required by attributeuse_affine
. Optional.4:
mean
- mean of input. Required by attributeuse_stats
. Optional.5:
variance
- variance of input. Required by attributeuse_stats
. Optional.
Outputs
1:
input_delta
- the the gradient tensor w.r.t. the output of the layer normalization. Required.2:
gamma_delta
- the the gradient tensor w.r.t. the gamma of the layer normalization. Optional.3:
beta_delta
- the the gradient tensor w.r.t. the beta of the layer normalization. Optional.
Types
T: any numeric type.